

CENTER FOR DISRUPTIVE MUSCULOSKELETAL INNOVATIONS

Predictive Modelling of Long-Term Surgical Outcomes for Lumbar Degenerative Disorders and Complex Spinal Deformity: Multidisciplinary conference versus computer modeling

Sigurd Berven, MD Paramjit Singh, MD Deeptee Jain, MD John Ibrahim, BA

University of California, San Francisco

WWW.NSFCDMI.ORG

Background

- Complex degenerative and adult deformity spine surgery
 - Significant variability in
 - Surgical approaches
 - Expected clinical outcomes
 - Expected rates of complication
- Predictive modeling
 - Empower informed choice for patients
 - Guides evidence-based treatment recommendations
- With a better understanding of expected outcomes, complications, and cost, the appropriateness of a given surgical procedure in a particular patient can be determined.
- Appropriate surgery is surgery in which the expected and observed benefits of surgery exceed the expected and observed complications of care.

Purpose

- Purpose
 - Identify predictor variables for:
 - Clinical improvement
 - Readmission
 - Revision surgery
 - Cost-effectiveness
 - Appropriateness of surgery
 - Develop a prospective predictive model based upon patient specific and diagnosis specific variables
 - Compare with this model and established models with accuracy of a multidisciplinary conference

Project Components

- Retrospective chart review based model
- Retrospective large data set model
- Multidisciplinary case based model
- Prospective model testing

Retrospective Data Analysis

- Retrospectively reviewed 100 consecutive patient charts
 - Patients >60 years old
 - >3 level surgery
 - Diagnosis: Adult spinal deformity
- Pre-operative variables of interest
 - Age
 - Gender
 - ASA class
 - Mets Score
 - BMI
 - Smoking status
 - Narcotic usage
 - Staged surgery
 - Number of levels
 - Depression
 - Circumforantial fucion

- Fracture hx
- DEXA
- Diabetes status
- Nutrition
- Infection hx
- Renal disease
- Liver disease
- DVT/PE hx
- Cardiac disease
- Social Support
- Frailty

Retrospective Model

- Outcomes
 - Surgical complications
 - Medical complications: DVT/PE, cardiac, Pulm, UTI
 - Surgical site infection
 - Pain mgmt difficulty
 - Transfusion
 - Length of stay
 - Discharge to Home vs SNF vs ARU
 - 30 day and 90 day
 - Readmission
 - Re-operation

Retrospective Model

- Adjustments to project:
 - Focused analysis and predictive modeling of patients with diagnosis of adult spinal deformity only
 - Outcomes limited to 90 days
- Pending Items
 - Collect social support information
 - Frailty index
 - Cost analysis
 - Statistical analysis

- Methods: Case control study, administrative claims database
- State inpatient database (SID) Healthcare Cost and Utilization Project - Agency for Healthcare Research and Quality
- North Carolina, Nebraska, New York, and Utah from 2005-2009 and California and Florida from 2005-2010
- Inclusion criteria: Age > 18, patients undergoing lumbar spine surgery using ICD9 codes, exclusion: cancer, infection, trauma diagnoses
- Data extracted for 30 day readmission as well as variables previously identified as risk factors for readmission

- Randomly assigned to derivation or validation cohort
- Stepwise multivariate analysis: variables p<0.01 on univariate analysis included in logistic multivariate regression
- Readmission after posterior spine fusion (RAPSF) scoring created, including OR >1.1 and p<0.01 on multivariate analysis
- Numeric value assigned as [OR-1/Sum(OR-1)] x 100, and each value was rounded to nearest whole number.
- Linear regression then used to validate model first in derivation cohort and then in validation cohort.

- Results: 214788 patients, Derivation cohort: 108514, Validation cohort: 106273
- Readmission rate 12.4% in derivation cohort, 12.5% in validation cohort

MUSCULOSKELETAL INNOVATIONS

Readmission
after posterior
spine fusion
(RAPSF score)

Variable	Score
Age	
<40	0
40-49	0
50-59	2
60-69	4
70-79 >80	7
700	13
Gender	
Male	
Female	1
Race	
White	
Hispanic	
Black	
Other	0
Insurance	
Commercial	0
Medicare	3
Medicaid	6
Other	1
Levels	
1-2 Levels	
3-7 levels	
>7 levels	15
Anterior Approach	3
Cerebrovascular disease	
Chronic Pulmonary Disease	1
Congestive Heart Failure	
Diabetes without Chronic Comp	
Diabetes with Chronic Comp	2
Hemiplegia/Paraplegia	9
Mild Liver Disease	_
Renal Disease	1
Rheumatic disease	1
Drug abuse	3
Electrolyte disorder	3
Osteoporosis	1
Depression	1
Malnutrition	2
Obese	2
Morbidly obese	
Total Score	100

- Derivation cohort
- Coefficient: 0.012
- R2 = 0.92

Validation cohort:

Coefficient: 0.013

• R2 = 0.95

Multidisciplinary Group Model

https://ucsf.co1.qualtrics.com/jfe/form/SV_9sr32Xa6hPb8UXH

Multidisciplinary Group Model

SAGE Major/Minor Complications

SAGE Dural Tear

16.07%	
Surgical Invasiveness: 20	
17.79%	
Surgical Invasiveness: 25	
19.66%	
Surgical Invasiveness: 30	
21.66%	
Surgical Invasiveness: 35	

SAGE Infection

9.53%	
Surgical Invasiveness: 20	
12.22%	
Surgical Invasiveness: 25	
15.53%	
Surgical Invasiveness: 30	
19.54%	
Surgical Invasiveness: 35	

NSQIP

Multidisciplinary Group Model

- Adjustments to project:
 - 20 representative cases presented to group then compared against established predictive models (Sage NSQIP)
 - Online Survey instead of group conference with questionnaire
- Pending Items
 - Collect online survey data
 - Email
 - Group conference
 - Data analysis

Prospective Model Testing

- Pending Items
 - Retrospective data collection and analysis completion
 - Develop/train prospective model with observations gather retrospectively
 - Apply model prospectively Multi-center