Predictive Modelling of Long-Term Surgical Outcomes for Lumbar Degenerative Disorders and Complex Spinal Deformity: Multidisciplinary conference versus computer modeling
Background

- Complex degenerative and adult deformity spine surgery
 - Significant variability in
 - Surgical approaches
 - Expected clinical outcomes
 - Expected rates of complication

- Predictive modeling
 - Empower informed choice for patients
 - Guides evidence-based treatment recommendations

- With a better understanding of expected outcomes, complications, and cost, the appropriateness of a given surgical procedure in a particular patient can be determined.

- Appropriate surgery is surgery in which the expected and observed benefits of surgery exceed the expected and observed complications of care.
Purpose

• Purpose
 • Identify predictor variables for:
 • Clinical improvement
 • Readmission
 • Revision surgery
 • Cost-effectiveness
 • Appropriateness of surgery

• Develop a prospective predictive model based upon patient specific and diagnosis specific variables

• Compare with this model and established models with accuracy of a multidisciplinary conference
Project Components

- Retrospective chart review based model
- Retrospective large data set model
- Multidisciplinary case based model
- Prospective model testing
Retrospective Data Analysis

- Retrospectively reviewed 100 consecutive patient charts
 - Patients >60 years old
 - >3 level surgery
 - Diagnosis: Adult spinal deformity

- Pre-operative variables of interest
 - Age
 - Gender
 - ASA class
 - Mets Score
 - BMI
 - Smoking status
 - Narcotic usage
 - Staged surgery
 - Number of levels
 - Depression
 - Circumferential fusion
 - Fracture hx
 - DEXA
 - Diabetes status
 - Nutrition
 - Infection hx
 - Renal disease
 - Liver disease
 - DVT/PE hx
 - Cardiac disease
 - Social Support
 - Frailty
• Outcomes
 • Surgical complications
 • Medical complications: DVT/PE, cardiac, Pulm, UTI
 • Surgical site infection
 • Pain mgmt difficulty
 • Transfusion
 • Length of stay
 • Discharge to Home vs SNF vs ARU
 • 30 day and 90 day
 • Readmission
 • Re-operation
Retrospective Model

- Adjustments to project:
 - Focused analysis and predictive modeling of patients with diagnosis of adult spinal deformity only
 - Outcomes limited to 90 days

- Pending Items
 - Collect social support information
 - Frailty index
 - Cost analysis
 - Statistical analysis
Large Data Set Analysis

- Methods: Case control study, administrative claims database
- State inpatient database (SID) Healthcare Cost and Utilization Project - Agency for Healthcare Research and Quality
- North Carolina, Nebraska, New York, and Utah from 2005-2009 and California and Florida from 2005-2010
- Inclusion criteria: Age > 18, patients undergoing lumbar spine surgery using ICD9 codes, exclusion: cancer, infection, trauma diagnoses
- Data extracted for 30 day readmission as well as variables previously identified as risk factors for readmission
Large Data Set Analysis

- Randomly assigned to derivation or validation cohort
- Stepwise multivariate analysis: variables p<0.01 on univariate analysis included in logistic multivariate regression
- Readmission after posterior spine fusion (RAPSF) scoring created, including OR >1.1 and p<0.01 on multivariate analysis
- Numeric value assigned as \([\frac{OR-1}{\text{Sum}(OR-1)}] \times 100\) , and each value was rounded to nearest whole number.
- Linear regression then used to validate model first in derivation cohort and then in validation cohort.
Large Data Set Analysis

- Results: 214788 patients, Derivation cohort: 108514, Validation cohort: 106273
- Readmission rate 12.4% in derivation cohort, 12.5% in validation cohort
Large Data Set Analysis

- Readmission after posterior spine fusion (RAPSF score)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td><40</td>
<td>0</td>
</tr>
<tr>
<td>40-49</td>
<td>0</td>
</tr>
<tr>
<td>50-59</td>
<td>2</td>
</tr>
<tr>
<td>60-69</td>
<td>4</td>
</tr>
<tr>
<td>70-79</td>
<td>7</td>
</tr>
<tr>
<td>>80</td>
<td>13</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>0</td>
</tr>
<tr>
<td>Female</td>
<td>1</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>0</td>
</tr>
<tr>
<td>Hispanic</td>
<td>2</td>
</tr>
<tr>
<td>Black</td>
<td>4</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
</tr>
<tr>
<td>Insurance</td>
<td></td>
</tr>
<tr>
<td>Commercial</td>
<td>0</td>
</tr>
<tr>
<td>Medicare</td>
<td>3</td>
</tr>
<tr>
<td>Medicaid</td>
<td>6</td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
</tr>
<tr>
<td>Levels</td>
<td></td>
</tr>
<tr>
<td>1-2 levels</td>
<td>0</td>
</tr>
<tr>
<td>3-7 levels</td>
<td>4</td>
</tr>
<tr>
<td>>7 levels</td>
<td>15</td>
</tr>
<tr>
<td>Anterior Approach</td>
<td>3</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>1</td>
</tr>
<tr>
<td>Chronic Pulmonary Disease</td>
<td>1</td>
</tr>
<tr>
<td>Congestive Heart Failure</td>
<td>2</td>
</tr>
<tr>
<td>Diabetes without Chronic Comp</td>
<td>1</td>
</tr>
<tr>
<td>Diabetes with Chronic Comp</td>
<td>2</td>
</tr>
<tr>
<td>Hemiplegia/Paraplegia</td>
<td>9</td>
</tr>
<tr>
<td>Mild Liver Disease</td>
<td>1</td>
</tr>
<tr>
<td>Renal Disease</td>
<td>1</td>
</tr>
<tr>
<td>Rheumatic disease</td>
<td>1</td>
</tr>
<tr>
<td>Drug abuse</td>
<td>3</td>
</tr>
<tr>
<td>Electrolyte disorder</td>
<td>3</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>1</td>
</tr>
<tr>
<td>Depression</td>
<td>1</td>
</tr>
<tr>
<td>Malnutrition</td>
<td>2</td>
</tr>
<tr>
<td>Obese</td>
<td>2</td>
</tr>
<tr>
<td>Morbidly obese</td>
<td>4</td>
</tr>
<tr>
<td>Total Score</td>
<td>100</td>
</tr>
</tbody>
</table>

Readmission after posterior spine fusion (RAPSF score)
Large Data Set Analysis

- Derivation cohort
- Coefficient: 0.012
- R2 = 0.92
Large Data Set Analysis

- Validation cohort:
- Coefficient: 0.013
- R² = 0.95
Multidisciplinary Group Model

https://ucsf.co1.qualtrics.com/jfe/form/SV_9sr32Xa6hPb8UXH

CASE 1:

70F independent non smoker, c/o low back pain, limited walking ability, and paresthesias to buttocks, diagnosed with scoliosis, DDD, and lumbar stenosis.

Prior Spine Surgeries: none

PMH: supraventricular tachycardia, GERD, HTN

Meds: verapamil, omeprazole, vitamin D3

Bone: Osteopenia

BMI: 25

ASA: 2

Exam: motor: 4/5 Left iliospsoas, EHL; sensory: diminished Left L4; no myelopathy

ODI: Preop: 76.48

EQ5D: Preop: 0.708
Multidisciplinary Group Model

- Adjustments to project:
 - 20 representative cases presented to group then compared against established predictive models (Sage NSQIP)
 - Online Survey instead of group conference with questionnaire

- Pending Items
 - Collect online survey data
 - Email
 - Group conference
 - Data analysis
Prospective Model Testing

• Pending Items
 • Retrospective data collection and analysis completion
 • Develop/train prospective model with observations gather retrospectively
 • Apply model prospectively - Multi-center